To compute a principal value integration
$\frac{E-E_s}{\pi} \int_0^\infty dx \frac{W(x)}{(x-E_s)(x-E)}$
One can change it into
$\frac{1}{\pi} \int_0^\infty dx \frac{W(x)}{(x-E)} - \frac{W(x)}{(x-E_s)}$
then using weight='cauchy' in quadpack, ( which multiply 1/(x-wvar) )
one can compute the integration as
quad(w,0.,200.,weight='cauchy',wvar=ee)[0]/np.pi -quad(w,0.,200.,weight='cauchy',wvar=es)[0]/np.pi
In case of Wolfram language, one can use
NIntegrate[(ee-Es)/Pi*W[x]/(x-Es)/(x-ee),{x,0,400.},PrincipalValue->True,PrecisionGoal->10,Method->"GlobalAdaptive",Exclusions->{6.0,ee}]
댓글 없음:
댓글 쓰기